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Abstract: Even in the face of global vaccination campaigns, there is still an urgent need for effective
antivirals against SARS-CoV-2 and its rapidly spreading variants. Several natural compounds
show potential as antiviral substances and have the advantages of broad availabilities and large
therapeutic windows. Here, we report that lectin from Triticum vulgaris (Wheat Germ Agglutinin)
displays antiviral activity against SARS-CoV-2 and its major Variants of Concern (VoC), Alpha and
Beta. In Vero B4 cells, WGA potently inhibits SARS-CoV-2 infection with an IC5 of <10 ng/mL.
WGA is effective upon preincubation with the virus or when added during infection. Pull-down
assays demonstrate direct binding of WGA to SARS-CoV-2, further strengthening the hypothesis
that inhibition of viral entry by neutralizing free virions might be the mode of action behind its
antiviral effect. Furthermore, WGA exhibits antiviral activity against human coronavirus OC43,
but not against other non-coronaviruses causing respiratory tract infections. Finally, WGA inhibits
infection of the lung cell line Calu-3 with wild type and VoC viruses with comparable ICs, values.
Altogether, our data indicate that topical administration of WGA might be effective for prophylaxis
or treatment of SARS-CoV-2 infections.

Keywords: SARS-CoV-2; COVID-19; WGA; lectin from Triticum vulgaris; antiviral; natural compounds;
variants of concern; Alpha; Beta

1. Introduction

Recent WHO statistics (10 September 2021) report more than 223 million confirmed
cases of COVID-19, including up to 4.6 million deaths [1], numbers that are expected to
be still on the rise. While vaccination campaigns are ongoing, the emergence and spread
of SARS-CoV-2 variants is becoming a major threat to public health. These “Variants of
Concern” (VOC) are the result of viral evolution and variability and have the potential to
evade vaccine- or infection-induced antiviral immune response [2,3].

Common symptoms at the onset of COVID-19 infection include fever, cough, and
sputum production, as well as myalgia and fatigue [4,5]. Leading symptoms are dyspnoea
and the severe acute respiratory distress syndrome (ARDS), a clinical syndrome of acute
lung injury with severe hypoxemia and a mortality rate of 40 to 60% [6]. In the case of
the VOC Delta, recent reports describe headache, sore throat, runny nose, and fever as
main symptoms, resembling a common cold and possibly leading to misinterpretations
and overlooking of COVID-19 infection [7].
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SARS-CoV-2 belongs to the genus Betacoronaviruses and is closely related to SARS-
CoV, which caused an outbreak of atypical pneumonia in 2002-2003 [8]. Both bind to
human angiotensin-converting enzyme 2 receptor (hACE2) on the host cell via their spike
protein [9], which is heavily glycosylated [10,11]. Upon binding, SARS-CoV-2 can enter the
cell either via membrane fusion after cleavage of the spike glycoprotein by the protease
TMPRSS2 [12] or via endocytosis facilitated by proteases such as cathepsin L [13,14]. Re-
cently, different SARS-CoV-2 variants, that harbor amongst other alterations mutations in
the receptor-binding domain (RBD) of the spike glycoprotein [15-18], have emerged world-
wide and are spreading rapidly. VOCs include the British strain SARS-CoV-2 Alpha [19]
(also referred to as B.1.1.7 [20]), the South African strain SARS-CoV-2 Beta [21] (also referred
to as B.1.351 [20]), the Brazilian strain Gamma [22] (also referred to as P.1 [20]), as well as
the Indian strain Delta [23] (also referred to as B.1.617.2 [20]). These VOCs were suggested
to show higher transmissibility and infectivity [15,24-28], causing drastically rising num-
bers of COVID-19 cases worldwide since the end of 2020. Furthermore, novel Variants of
Interest (VOIs), such as the Lambda strain, are currently on the rise [29], and are expected
to appear continuously in the future. In the light of this ongoing trend, the development of
effective prophylactic and therapeutic countermeasures remains of utmost importance.

Regarding therapeutic treatment of patients with COVID-19, large randomized studies
such as the RECOVERY and the WHO Solidarity trials showed therapeutic benefit only
for low dose treatment with dexamethasone [30], while other repurposed drugs like
hydroxychloroquine (HCQN) [31] or remdesivir (RDV) [32] failed to show beneficial effects.
There are currently no treatment options for early stages of infection apart from monoclonal
antibodies for high-risk patients, which need to be administered at an early time point [33].
Since December 2020, four vaccines have been authorized by the European Medicines
Agency (EMA), including two mRNA vaccines from Pfizer-BioNTech and Moderna, as
well as two vaccines based on viral vectors from Johnson & Johnson and AstraZeneca [34].
However, in many regions there is still a shortage of vaccine doses and in the light of
currently spreading SARS-CoV-2 VOCs, the efficacy of current vaccines against mutated
virus strains still needs to be evaluated conclusively. Furthermore, herd immunity might
be difficult to achieve, as the vaccines do not confer sterile immunity [35]. Hence, there
is ongoing concern that in the near future, SARS-CoV-2 will transform into an endemic
virus causing seasonal severe respiratory infections. All this highlights the unmet urgent
need to develop prophylactic as well as safe therapeutic agents, widely available and
broadly acting against different viral strains of SARS-CoV-2. Considering the time- and
cost-consuming path for the development of new therapeutics, the evaluation of existing
drugs as well as natural substances for their antiviral activity against SARS-CoV-2 is a fast
and promising alternative.

In the past, natural substances have been highlighted repeatedly for their antiviral
potential against a variety of viruses. Since the outbreak of the current SARS-CoV-2 pan-
demic, several natural substances were tested for their potential effects against SARS-CoV-2.
Among them, iota-carrageenan and quinine were shown to potently inhibit SARS-CoV-2
replication in vitro [36,37] and in the case of iota-carrageenan also in vivo [38]. Moreover,
other natural compounds that are undergoing clinical trials were examined for their po-
tential to treat COVID-19, for example, vitamin C or D, which were suggested to reduce
the severity of cytokine storms [39,40], or lactoferrin, which was considered to compete
with the virus in sialic acid binding [41]. A different mechanism was suggested for phytoe-
strogens and estrogens, which bind to the cell-surface Heat Shock Protein A5 responsible
for pathogen entry and may therefore interfere with SARS-CoV-2 attachment [42]. Fur-
thermore, natural substances such as resveratrol or melatonin were described as possible
supplements in COVID-19 therapy due to their anti-inflammatory properties or their
promising results against other viruses [43]. Numerous other classes of natural compounds
considered to exhibit anti-SARS-CoV-2 activity via inhibition of viral interaction with
cellular factors or inhibition of viral proteases are mentioned in several reviews [44,45].
Another class of naturally derived compounds that has been predicted as promising for the



Int. J. Mol. Sci. 2021, 22, 10205

30f17

treatment of SARS-CoV-2 and other coronavirus infections is the group of lectins, which
are proteins that bind specifically to carbohydrate structures [46]. Due to their potential
to interact with viral envelope glycoproteins, different plant- and bacteria-derived lectins
have been reported to exhibit strong antiviral activity against a number of viruses in the
past, including SARS-CoV and MERS-CoV [47,48]. In addition to the antiviral properties of
lectins, numerous studies have highlighted their potential as antineoplastic agents active
against different tumor cell lines, and several clinical trials have been initiated [49,50].

A common lectin belonging to the group of chitin-binding lectins composed of hevein
domains is lectin from Triticum vulgaris, also known as Wheat Germ Agglutinin (WGA) [51].
WGA is one of the most extensively studied and characterized lectins, which is widespread
in nutrition. Up to 0.5 g/kg lectin concentration are present in wheat germ [52]. WGA binds
specifically to N-Acetyl-D-glucosamine (GlcNAc) and was shown to interact with sialic
acid residues [53]. Due to its binding profile, WGA is widely used to label cell membranes
and tissues in scientific imaging [54,55], and was shown to detect specific Gram-positive
and Gram-negative bacteria [56]. It expresses antifungal activity [57] and interacts with
immune cells in several ways, such as inhibiting T lymphocyte proliferation [58,59]. In
addition to that, several studies have highlighted the potential of WGA to improve drug
delivery systems by using WGA-anchored nanoparticles to facilitate adhesion and uptake
of therapeutics and enhance therapeutic efficacy [60,61]. By now, there is limited knowledge
about its antiviral effects. WGA has been reported to inhibit the adsorption of human T-cell
leukemia virus type 1 when added before adsorption [62]. However, anti-SARS-CoV-2
activity has not been analyzed yet. Therefore, this study aimed to investigate of whether
WGA is able to inhibit SARS-CoV-2 infection, and if so to evaluate its potential use as an
antiviral agent in the current COVID-19 pandemic. Here, we report that WGA directly
binds to SARS-CoV-2 and is able to inhibit infection of different human and non-human
cell lines. Furthermore, WGA exhibits antiviral activity against the SARS-CoV-2 VOCs
Alpha and Beta in a human lung cell line, where it shows a therapeutic window of up to
four log stages. Due to its low cytotoxicity profile and its antiviral activity in the nanomolar
range, our data could pave the way for a clinical evaluation of WGA as a prophylactic and
therapeutic agent in COVID-19 infections.

2. Results
2.1. Wheat Germ Agglutinin Inhibits Replication of SARS-CoV-2 in Vero B4 Cells

In order to investigate whether WGA exhibits antiviral activity against SARS-CoV-2,
Vero B4 cells (African green monkey kidney cells) were infected with the patient isolate
SARS-CoV-2pRr.; (Wuhan type) for 1 h and then treated with different concentrations of
WGA as described in the treatment scheme in Figure 1A. Cell culture supernatants were
harvested after 3 days and virus production was analyzed via quantitative RT-PCR (qRT-
PCR) and Western blot. Treatment with WGA led to a strong reduction of SARS-CoV-2
replication (Figure 1B). A concentration of 10 pg/mL WGA completely abolished the pres-
ence of viral RNA copies in cell culture supernatants. The inhibitory effect was observed in
a dose-dependent manner and was confirmed by Western blot analysis, which revealed an
even stronger and dose-responsive reduction of virion production upon treatment with
WGA (Figure 1C). Collectively, these data provide the first evidence that WGA exhibits
antiviral activity against SARS-CoV-2 in Vero B4 cells, with an estimated ICsg of <10 ng/mL.

Lectins bind specifically to carbohydrate structures and interact with sugar moieties,
which might interfere with cell viability. Therefore, we controlled for potential cytotoxic
effects of WGA, by conducting cell viability assays. After 3 days of incubating Vero
B4 or Calu-3 cells (non-small-lung cancer cells) with increasing concentrations of WGA,
neutral red assays were performed. As shown in Figure 2, treatment at concentrations that
effectively inhibited SARS-CoV-2 replication in Vero B4 cells had no cytotoxic effects in
this cell line. For Vero B4 cells, the TDs5( determined by neutral red assay was ~50 ug/mL
(Figure 2A). The TDs( in Calu-3 cells was ~30 pg/mL (Figure 2B), and hence slightly lower.
These data show that the TDsy of WGA varies between ~30 pug/mL (Calu-3) and 50 pg/mL
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(Vero B4) depending on the cell lines investigated, indicating a therapeutic window of
at least three log stages in Vero B4 cells. Water-soluble tetrazolium salt (WST)-1 assays
showed similar results (data not shown).
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Figure 1. WGA inhibits SARS-CoV-2 replication in Vero B4 cells. (A) Treatment scheme. Time of addition (TOA) of WGA to
cells was at 3 days after infection. (B) qRT-PCR of cell culture supernatants after 3 days of treatment with WGA. Analysis of
three independent experiments. (C) Western blot analysis of released virions. Supernatants were harvested 3 dpi, virions
were purified and analyzed by Western blot using anti-SARS-CoV-2 nucleoprotein antibody. Densitometric analysis of
five independent experiments + standard deviation using AIDA®, one representative Western blot is shown. * p < 0.05,
** p <0.005 and **** p < 0.0001 using a one-sample ¢-test.
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Figure 2. Influence of WGA on the cell viability of Vero B4 and Calu-3 cells. Vero B4 (A) or Calu-3 (B) cells were incubated

with indicated concentrations of WGA. As a positive control, staurosporinean, an inducer of apoptosis, was added at a

concentration of 10 pM. Following treatment for three days, cell viability was measured by neutral red assays. Bars show

mean values of five (A) or three (B) independent experiments + standard deviation.

2.2. Pretreatment of SARS-CoV-2 with WGA Effectively Inhibits Infection in Vero B4 Cells

With different lectins being described as inhibitors of viral entry [47], we hypothesized
a similar mode of action for WGA. More specifically, we postulated binding of the lectin
to the viral envelope, masking the viral surface and preventing SARS-CoV-2 entry into
the host cells by virus neutralization. This hypothesis was further evaluated by time of
addition (TOA) experimental setups.
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For this, we preincubated SARS-CoV-2pr.1 with different concentrations of WGA
for 2 h at 37 °C (see treatment scheme Figure 3A). The preincubated dilutions were then
used to infect Vero B4 cells, and cell culture supernatants were harvested after 3 days and
analyzed as described above. Our data revealed that preincubation of the virus without
further treatment during the post-infection period, interferes with SARS-CoV-2 replication
in Vero B4 cells (Figure 3B,C), similar to post-infection treatment (Figure 1). Furthermore,
10 pg/mL WGA completely blocked the infection as measured by qRT-PCR (Figure 3B)
and Western blot (Figure 3C). HCQN, as an entry inhibitor of SARS-CoV-2 [63,64], showed
similar effects, whereas RDV, an inhibitor of RNA metabolism [65], was clearly less active
in this experimental setup.
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Figure 3. Preincubation of virus stocks with WGA blocks SARS-CoV-2 infection in Vero B4 cells. (A) Treatment scheme.
TOA of WGA was during preincubation of virus and infection of cells. Virus stock was preincubated with WGA for 2 h
and the dilution was then used to infect Vero B4 cells for 1 h. (B) qRT-PCR of cell culture supernatant after preincubation
of SARS-CoV-2 with WGA for 2 h and no further treatment after infection. HCQN at 10 uM and RDV at 1 uM were
added as a control. Analysis of three independent experiments. (C) Western blot analysis of released virions. Supernatants
were harvested 3 dpi, virions were purified and analyzed by Western blot using anti-SARS-CoV-2 nucleoprotein antibody.
Densitometric analysis of four independent experiments + standard deviation using AIDA®, one representative Western
blot is shown. * p < 0.05, ** p < 0.005, *** p < 0.0009 and **** p < 0.0001 using a one-sample t-test.

In a second setup, we further evaluated the inhibitory potential of WGA by narrowing
down the time frame at which the substance needs to be present to exert antiviral activity.
For this, we added WGA to Vero B4 cells only during the time of infection for 1 h and
without applying further treatment to the cells afterwards (treatment scheme Figure 4A).
Infection solutions containing SARS-CoV-2pr.; were incubated for 2 h at 37 °C without
adding WGA. Then, WGA was added only during the 1 h infection period. After 1 h,
the infectious supernatants were removed and the cells were incubated without further
treatment for three days. Our results revealed that WGA also inhibits SARS-CoV-2 replica-
tion in Vero B4 cells, when present only during the 1 h period of infection. Again, virus
production was completely blocked at a concentration of 10 ug/mL, as shown both by
gRT-PCR (Figure 4B) and Western blot analysis of viral protein in cell lysates (Figure 4C).

Together, these data indicate that WGA exhibits antiviral activity even if the substance
is present only during the time of infection, further suggesting that similar to other lectin—
virus interactions, WGA might physically interact with the viral particle.
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Figure 4. WGA inhibits SARS-CoV-2 replication in Vero B4 cells when present only during the time of infection.
(A) Treatment scheme. TOA of WGA was only during infection of cells for 1 h. (B) qRT-PCR of cell culture supernatants
after adding WGA to Vero B4 cells for 1 h during the time of infection and no further treatment afterwards. Analysis of
three independent experiments. (C) Western blot analysis of released virions. Supernatants were harvested 3 dpi, virions
were purified and analyzed by Western blot using anti-SARS-CoV-2 nucleoprotein antibody. Densitometric analysis of
three independent experiments + standard deviation using AIDA®, one representative Western blot is shown. * p < 0.05,
** p <0.005 and **** p < 0.0001 using a one-sample ¢-test.

2.3. WGA Binds to SARS-CoV-2 Virions

The time of addition experiments demonstrated that it is sufficient for WGA to deploy
its antiviral activity when it is present only during initial infection. Hence, no further
treatment is necessary in order to block the spread of infection. A conclusive explanation
for this early antiviral effect of WGA would be direct binding of WGA to the virus envelope
prior to viral entry, essentially causing its neutralization. To test this hypothesis, we
performed pull-down assays with streptavidin beads and biotinylated WGA. As shown
in the scheme in Figure 5A, the pull-down of SARS-CoV-2 and therefore the detection
of virus in the pellet should become possible via binding of the biotinylated lectin to the
beads as well as to the virus itself. According to our assumption, no viral RNA copies were
detectable in the pellet when virus solution was incubated only with beads (mock) or with
non-biotinylated WGA, whereas the addition of biotinylated WGA enabled quantitative
pull-down of the virus (Figure 5B). These data suggest direct binding of WGA to SARS-
CoV-2 viral particles, underlining our hypothesis that binding of virus and inhibition of
viral entry is the possible mode of action behind the antiviral activity of WGA.

2.4. WGA Inhibits Replication of SARS-CoV-2 Variants Alpha (B.1.1.7) and Beta (B.1.351) in the
Human Calu-3 Lung Cell Line

As our results indicate that WGA directly binds to the virus, we aimed to test whether
variations in major glycoproteins on the viral envelope affect the inhibitory capacity of
WGA. Calu-3 cells were used for these experiments as a model for human lung cells, the
relevant SARS-CoV-2 target cells in vivo. Calu-3 cells were infected with the wide-spread
variants Alpha and Beta, as well as the wildtype isolate PR-1. Cells were infected at the
same MOI and treated with different concentrations of WGA after infection according to
the treatment scheme in Figure 1A. Cell culture supernatants were harvested as described
above and analyzed via qRT-PCR. As before, concentrations in the nanomolar range were
able to inhibit infection of Calu-3 cells by both Alpha and Beta variants, with an IC5 of
~50 ng/mL for Alpha and ~100 ng/mL for Beta (Figure 6B,C). For the infection with
SARS-CoV-2pg.1 wildtype virus, an ICsp of ~10 ng/mL was determined (Figure 6A). These
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data show that WGA also exhibits antiviral activity in a relevant lung cell line and is able
to inhibit the VOCs Alpha and Beta in a nM range, although with variable ICs5, values.
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Figure 5. Pull-down assays demonstrate the direct binding of WGA to SARS-CoV-2. (A) Pull-down of SARS-CoV-2 with
streptavidin beads becomes possible via binding to biotinylated WGA. Scheme was created with BioRender.com, accessed
on 18 September 2021 (B) Streptavidin beads were incubated with SARS-CoV-2 and biotinylated or not biotinylated WGA
for 30 min. Beads were centrifuged and examined for viral RNA copies via qRT-PCR. Three independent experiments

were analyzed.
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Figure 6. WGA inhibits replication of SARS-CoV-2pg.1, Alpha and Beta in Calu-3 cells. qRT-PCR analysis of cell culture
supernatants after 3 days of treatment with WGA. Calu-3 cells were infected with either SARS-CoV-2pr_1 (A), Alpha (B) or
Beta (C) and supernatants were harvested 3 dpi. Bars show analysis of three (A,B) or four (C) independent experiments.
*p <0.05 and **** p < 0.0001 using a one-sample t-test.

2.5. WGA Moderately Inhibits the Replication of hCoV OC34 in Vero Cells

Next, we wanted to evaluate whether WGA is similarly effective against another
member of the Betacoronavirus family, namely hCoV OC43. To this end, Vero cells were
infected with the endemic hCoV OC43 in the presence of a semilogarithmic dilution series
of WGA. After 45 min, infection was stopped, and cells were overlaid with medium
containing WGA (Treatment scheme Figure 7A). After 48 h, cells were fixed, and infection
was determined via ELISA using an antibody against the nucleoprotein. WGA inhibited
hCoV OC43 replication with an ICsp of ~600 ng/mL while the TDsy was ~50 pug/mL
(Figure 7B). These data show that WGA exhibits moderate antiviral activity also against

endemic hCoV OC43.
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Figure 7. Pre-, co- and post-incubation of endemic hCoV OC43 with WGA blocks infection in Vero cells. (A) Treatment
scheme. Virus stock was preincubated with WGA and the dilution was then used to infect Vero cells. After infection, the

inoculum was removed, and cells were overlaid with medium containing test substance at the same concentrations as in

the pre-/co-incubation treatment. (B) Quantification of viral NP in fixed cells after pre-, co-, and post-infection treatment

with WGA. Iota-carrageenan (IC) at 1.2 pg/mL was added as control. The graphs show viral protein as percent of the
untreated control and standard deviation of quintuplets. * p < 0.05, ** p < 0.005, *** p < 0.0009 and **** p < 0.0001 using a

one-sample t-test.

2.6. WGA Does Not Inhibit Binding and/or Replication of Other Virus Families Causing Upper
Respiratory Tract Infections

We also tested WGA against some of the most prevalent respiratory viruses causing the
common cold and/or herpangina. Replication inhibition tests were performed with human
Rhinovirus serotype 1A (hRV1a), human Rhinovirus serotype 8 (hRV8), and Coxsackievirus
A10. All viruses were tested using a combined pre-/co-/post-infection treatment and the
respective susceptible cell line with cell viability as outcome parameter. We did not see any
inhibitory effect at the tested concentration range (30 ng/mL to 4 pg/mL) on any of these
viruses (data not shown).

Furthermore, we performed hemagglutination inhibition assays (HAI) to evaluate
WGASs’ ability to prevent binding of different respiratory viruses to erythrocytes. It
has already been shown that binding of hemagglutination-competent viruses (includ-
ing influenzaviruses and parainfluenzaviruses) can be dose-dependently inhibited by
iota-carrageenan, a marine polymer derived from the red seaweed, which is known to
interact directly with the viral surface. By preventing binding, infection and replication of
those viruses are inhibited [66,67]. As we assume a similar mode of action of WGA, we
performed HAI experiments with WGA and Human Parainfluenza Virus Type 3 (PIV3)
as well as influenza virus A HIN1pdm09. As expected, WGA agglutinated erythrocytes
at higher concentrations (higher than 240 ng/mL). The testable lower concentrations (2
to 240 ng/mL) did not show any inhibitory effect on any of the tested viruses while iota-
carrageenan was active against all viruses with minimal inhibitory concentrations of 70
and 800 ng/mL, respectively (data not shown).

3. Discussion

Emerging viruses such as SARS-CoV-2 can cause global pandemics with the potential
for serious health problems. According to the WHO Global Study of Origins of SARS-CoV-
2, the virus most likely derived from the animal kingdom through an intermediate host
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followed by spillover [68]. It can be assumed that, as before, in the future viruses could
spread from animals to humans via zoonotic transmission, potentially causing pandemic
threats. This altogether necessitates a general need for pandemic preparedness. In the case
of SARS-CoV-2, there is still a tremendous need for the development of new therapeutics
that are safe, relatively cheap, and easily distributable to a wide range of populations.
Vaccination campaigns are ongoing worldwide, but there is still limited information about
effectiveness and safety in patients with different chronic diseases or young children.
This requires further research into promising antiviral candidates to develop efficient
countermeasures against SARS-CoV-2 infections.

An alternative approach to the repurposing of existing synthetic drugs, like HCQN and
RDYV, are natural substances with antiviral activity against SARS-CoV-2. Natural substances
would have the advantages of a better toxicological profile with a larger therapeutic
windows, less side effects, and a faster admission process in comparison to chemically
engineered drugs. In the past, natural substances have been highlighted repeatedly for
their beneficial effects on many diseases, including metabolic disorders or cancer [69].
Most importantly, they have also proved promising against a variety of different viruses,
including SARS-CoV and MERS-CoV [46].

In this study, we showed the antiviral potential of the plant lectin WGA against SARS-
CoV-2. A large group of different plant- and bacteria-derived lectins has been reported
to exhibit antiviral activity against a number of viruses, including coronaviruses [47,48].
Different in vivo study models already demonstrated beneficial effects of different lectins
in mice, such as a decrease in Ebola titers and mortality after subcutaneous injection
of Cyanovirin-N [70]. A reduction of HCV viral titers was observed in mouse-human
chimeric liver models after subcutaneous administration of Griffithsin [71]. In the case of
SARS-CoV, intranasal treatment of infected mice with Griffithsin lead to reduced viral titers,
pulmonary pathology, and cytokine responses in infected lung tissue [72]. Furthermore,
and even more intriguingly, a very recent study revealed synergistic antiviral activity using
a combination of the lectin Griffithsin and carrageenan when tested against SARS-CoV-2
pseudoviruses [73]. Therefore, analyzing the antiviral effect of combined treatment with
WGA and carrageenan, which both act most likely by neutralizing cell free virions, might
be a legitimate follow up to our current study.

The hevein-like lectin UDA was shown to exhibit 50% protection from death in a
lethal mouse model after infection with an adapted SARS-CoV strain [74]. However, in the
case of WGA, little is known about its antiviral effects and any potential anti-SARS-CoV-2
activity has not been reported yet.

Here we could demonstrate potent anti-SARS-CoV-2 activity for WGA in different
cell lines with an estimated ICsg of ~10 ng/mL. Time-of-addition assays revealed that
WGA inhibits SARS-CoV-2 replication very potently when preincubated with the virus
and when added to the cells only during infection. In accordance with similar interactions
between other lectins and viral envelope proteins reported so far [75,76], our data indicate
an interaction with the viral envelope as a possible mode of action. To test our hypothesis,
pull-down assays were performed, showing a direct binding of biotinylated WGA to SARS-
CoV-2 virions. This is consistent with our results described above, suggesting a direct
binding and neutralization of the virus as the mode of action behind the anti-SARS-CoV-2
activity of WGA. As the SARS-CoV-2 spike protein is heavily glycosylated [10,11], it is
likely that it might be the binding site for WGA on the viral envelope. Such a mode of
action might also explain the difference in ICsj values for wt and VOCs Alpha and Beta of
SARS-CoV-2. Future experiments now need to elucidate whether this hypothesis is true
and which exact regions are involved in the interaction.

WGA was shown to exert cytotoxic activity on different cancer cell lines, such as
pancreatic, liver, bone, and skin cancer cells [77-79]. It was reported to exhibit time- and
dose-dependent cytotoxicity towards acute myeloid leukemia cells in low doses, whereas
no effect on normal cells was observed [80]. To analyze for possible cytotoxicity in our ex-
perimental setups, toxicity assays were performed in all cell lines used for our experiments.
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In Vero B4 cells, the TDs5p was /50 pg/mL, resulting in a broad therapeutic window of at
least three log stages. In Calu-3 cells, the TD5 was slightly lower, at ~30 pg/mL. Despite
these variations among the tested cell lines, there is still a broad therapeutic window of
several log stages.

The main host cells for SARS-CoV-2 infection are human lung cells expressing both
receptors ACE2 and the protease TMPRSS2 [12]. To confirm our results in a cell line
relevant for COVID-19 pathogenesis, we infected Calu-3 cells with the wildtype isolate
SARS-CoV-2pRr.1. In this relevant cell line, treatment with WGA potently reduced viral
replication with an ICsp of ~10 ng/mL. These data suggest that usage of WGA on the
relevant host cells could reduce infection with SARS-CoV-2 in vivo, and therefore prevent
the transition of a mild infection to a severe COVID-19 stage of disease, a hypothesis that
needs to be supported by clinical studies.

Different SARS-CoV-2 VOCs such as Alpha and Beta with mutations in the spike
glycoprotein are spreading, with Delta currently on the rise and being of particular con-
cern [81]. Here, especially their increased infectivity and transmissibility are relevant and
lead to rapidly rising numbers of infections. In order to analyze whether WGA exhibits
antiviral activity against VOCs as well, Calu-3 cells were infected with Alpha and Beta
and treated with WGA afterwards. Our results show that the replication of these variants
could also be blocked. This suggests that WGA might especially be useful as a prophylactic
and therapeutic countermeasure nowadays, as the percentage of infections with these
variants has been rising continuously. Interestingly, infection with the variants was less
potently inhibited compared to the wildtype PR-1, with an ICsy of ~50 ng/mL for Alpha
and ~100 ng/mL for Beta. This indicates that the binding site of WGA might lie within
one of the spike regions that are mutated in the VOCs, especially in the Beta variant, as
we could see the weakest inhibitory effect of WGA with this variant. Of note, the muta-
tions K417N, E484K, and A701V are present in the spike protein of the Beta variant but
not the Alpha variant [16], and the E484K spike mutation has been suggested to reduce
antibody neutralization [82]. Further experiments will elucidate the spike domains crucial
for WGA binding.

We could also show that WGA exerts moderate antiviral effectivity against endemic
hCoV OC43, but not against other viruses causing upper respiratory tract infections,
confirming our assumption that the interaction between WGA and the SARS-CoV-2 spike
protein is rather specific. HCoV OC43 belongs to the family of Betacoronaviruses as
well and is one of the most common human coronavirus worldwide [83]. HCoV OC43
binds to N-acetyl-9-O-acetylneuraminic acid [84,85] and was shown to utilize HLA class
I molecule or sialic acids for cell entry [86,87]. Like other coronaviruses, it also carries a
spike glycoprotein on its envelope, which differs from other hCoVs by length and amino
acid sequence [88]. The antiviral activity of WGA against hCoV OC43 might therefore be
mediated via binding to the spike protein as well. A recent study has suggested that cross-
reactive antibodies against hCoV OC43 spike protein show correlation with COVID-19
disease severity [89]. Interestingly, the inhibition capacity was less potent in hCoV OC43
compared to SARS-CoV-2, with an ICsy of ~500 ng/mL, which again indicates that the
different structures of the respective spike proteins determine the strength of the antiviral
activity. As WGA was not active against other non-coronaviruses in our assays, the spike
protein might be the binding site for WGA and therefore mediate specific antiviral activity
against coronaviruses.

Conclusively, our data provide a sound basis for investigations into future in vivo
use of WGA in prophylaxis and treatment of SARS-CoV-2 infection. Due to its ability to
bind the virus and to inhibit replication at early stages of infection, WGA appears to be an
ideal candidate for topical administration via a nasal or throat spray. WGA is known to be
relatively stable at low pH and resistant to proteolysis [53], which are favorable qualities for
in vivo application. Indeed, past studies with other lectins could demonstrate successful
in vivo application in virus-infected mice [72,74].
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Our results suggest that WGA could provide beneficial effects both in prophylactic
and in therapeutic settings. Its low cytotoxicity, the broad therapeutic window, and the
wide availability in nature would render it an easily distributable agent in both current
and future pandemics.

4. Materials and Methods
4.1. Viruses

The virus strain SARS-CoV-2pg.; was isolated from a 61-year-old patient and am-
plified in Vero B4 cells as described previously [36]. Viral titers were determined by an
endpoint titration assay. For the generation of new virus stock, virus-containing cell culture
supernatant was harvested at 72 h post-infection (hpi), centrifuged and passed through
a 0.45 um pore-size filter. Virus stocks were stored at —80 °C until further usage. For
Western blot analysis, Vero B4 cells were infected with SARS-CoV-2pr.1 (multiplicity of in-
fection/MOI = 0.01) for 1 h, then the inoculum was removed and cells were further treated
with interventions. At 72 hpi, virus-containing cell culture supernatants were harvested,
and released virions were purified through 20% (w/v) sucrose cushion (20,000x g, 4 °C,
90 min).

For MOI determination of SARS-CoV-2pr.1, Alpha and Beta virus stocks, Vero B4
cells were infected with serial dilutions of the virus stock over 72 h. Afterward, cells were
fixed (4% PFA), permeabilized (0.5% Triton/PBS), blocked (1% BSA /PBS-T), and finally
stained with a SARS-CoV-2 NP antibody (Biozol, Eching, Germany). The endpoint of virus
infection was analyzed via fluorescence microscopy, and viral titer was calculated by the
method of Reed and Muench [90].

The Alpha variant (210416_UKv) was isolated from a throat swab collected in April 2021
at the Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospi-
tal Tiibingen, from a PCR-positive patient. In total, 200 uL of patient material was diluted
in medium and used to directly inoculate 150,000 Caco-2 cells in a six-well plate. 48 h
post-infection, the supernatant was collected, centrifuged, and stored at —80 °C. After two
consecutive passages, the supernatant was tested by qRT-PCR confirming the presence of
the N501Y point mutation. Finally, Next Generation Sequencing (NGS) confirmed that the
clinical isolate belongs to the lineage B.1.1.7.

SARS-CoV-2 Beta was generated as described in [91].

Human Rhinovirus (hRV) 1a and 8, hCoV OC 43, coxsackievirus A 10, parainfluen-
zavirus (PIV) 3 and influenzavirus A HIN1pdm09 were propagated as described previ-
ously [66].

4.2. Cell Culture

Vero B4 cells were maintained in Dulbecco’s Modified Eagle’s Medium (DMEM)
containing 10% (v/v) inactivated fetal calf serum (FCS), 2 mM l-glutamine, 100 U/mL
penicillin, and 100 pg/mL streptomycin.

Calu-3 (human lung adenocarcinoma) cells were cultured at 37 °C with 5% CO; in
DMEM containing 10% FCS, with 2 mM I-glutamine and 100 g/mL penicillin-streptomycin.

HeLa, RD and Vero cells were cultivated as previously described [66].

4.3. Determination of the Number of Viral RNA Copies from Released Viruses by gRT-PCR

The virus was quantified by real-time PCR AgPath-ID One-Step RT-PCR Kit from Am-
bion (Cat: 4387424), allowing reverse transcription, cDNA synthesis, and PCR amplification
in a single step. Samples were analyzed by 7500 software v2.3 (Applied Bioscience, Mumbeai,
India). PCR primers were used according to [92]: RAdRp_fwd: 50-GTG-ARA-TGG-TCA-
TGT-GTG-GCGG-30 and RdRp_rev 50-CAR-ATG-TTA-AAS-ACA-CTA-TTA-GCA-TA-
C-30. The probe was 50-CAG-GTG-GAA-/ZEN/CCT-CAT-CAG-GAG-ATG-C-30 (label:
FAM/IBFQ Iowa Black FQ, Integrated DNA Technologies, Coralvielle, lowa, USA. As a pos-
itive control, a specific target for the E and RdRp gene of SARS-CoV2 was used and made
by Integrated DNA Technologies. Control: 50-TAA-TAC-GAC-TCA-CTA-TAGGGT-ATT-
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GAG-TGA-AAT-GGT-CAT-GTG-TGG-CGG-TTC-ACT-ATA-TGT-TAA-ACCAGG-TGG-AA
C-CTC-ATC-AGG-AGA-TGC-CAC-AAC-TGC-TTA-TGC-TAA-TAG-TGTTTT-TAA-CAT-T
TG-GAA-GAG-ACA-GGT-ACG-TTA-ATA-GTT-AAT-AGC-GTA-CTTCTT-TTT-CTT-GCT-
TTC-GTG-GTA-TTC-TTG-CTA-GTT-ACA-CTA-GCC-ATC-CTT-ACTGCG-CTT-CGA-TTG-
TGT-GCG-TAC-TGC-TGC-AAT-ATT-GTT-3'.

4.4. Inhibitors

Lectin from Triticum vulgaris was obtained from Sigma-Aldrich (St. Louis, MO, USA)
and dissolved in PBS, resulting in a stock solution of 1 mg/mL. Hydroxychloroquine was
acquired as a pure substance (Cayman, Ann Arbor, MI, USA) and dissolved in PBS with a
stock solution of 11.5 mM. Remdesivir was obtained from Cayman Chemical (Ann Arbor,
MI, USA) and dissolved in DMSO, resulting in a stock solution of 1 mM. All interventions
were used at the concentrations indicated in the different experiments.

Iota-carrageenan was used as positive control in some assays and was purchased
from Dupont former FMC Biopolymers (both Philadelphia, PA, USA). The dry polymer
powders were dissolved in cell culture water (B Braun, Melsungen, Germany) to a final iota-
carrageenan concentration of 2.4 mg/mL containing 0.5% NaCl (Merck KGA, Darmstadt,
Germany). This stock solution was sterile filtered through a 0.22 mm filter (Sarstedt,
Niumbrecht, Germany) and stored at 4 °C until use.

4.5. Infection Experiments

Confluent monolayers of 2 x 10° cells/mL Vero B4 were seeded in 6-well plates and
infected with the field isolate SARS-CoV-2pr.; with an MOI of 0.01 in FCS-free DMEM. At
1 h post-infection, the input virus was removed, and cells were treated with interventions.
At 72 hpi, supernatants were harvested and either centrifuged by 20% sucrose cushion
and analyzed via Western blot or incubated for 10 min at 95 °C and finally used for
gRT-PCR analysis.

For preincubation experiments, SARS-CoV-2pgr.; was preincubated either with or
without inhibitors for 2 h at 37 °C and then used to infect Vero B4 cells. After 1 h, the
inoculum was removed, and cells were incubated without treatment for another 3 days. At
72 hpi, supernatants were harvested and analyzed as described above.

A total of 2 x 10° Calu-3 cells/mL were seeded in 24-well plates and infected in
FCS-free DMEM with SARS-CoV-2pg.1 and the variants Alpha or Beta with an MOI of
0.01 the next day. After 1 h, the input virus was removed, and the cells were treated with
inhibitors for three days. Supernatants were harvested and analyzed via qRT-PCR as
described above.

Virus and cell cultivation, as well as antiviral activity assays for hRV1a, hRV8, coxsack-
ievirus A10 and hCoV OC43, were performed as previously described [37,66]. In short, the
respective virus was preincubated with a semilogarithmic dilution series of the respective
antiviral before it was added to permissive cell lines (HeLa/RD/Vero) for infection. After
infection, cells were washed with medium and cultured at 33 °C (hRV) or 37 °C (Coxsack-
ievirus A10, hCoV OC43), thereby maintaining the same dilution of antiviral as in the
prophylactic treatment. The specific antiviral activity was established by determining the
effect on cell viability (HRV1a, hRVS8, Coxsackievirus A10) or by immunostaining (hCoV
OC43). An incubation of cells with the same dilution series in the absence of viral infection
was performed to monitor the potential toxicity of the treatment. In all these assays, a
sample of known inhibitory activity (iota-carrageenan in 0.5% NaCl), a negative control
(0.5% NaCl) and toxicity controls in the absence of virus were included to ensure that the
assay was functional and to relate the activity of any antiviral to a reference of known
effectiveness. The assays were standardized, and only assays meeting the predefined
acceptance criteria were used for data evaluation.



Int. J. Mol. Sci. 2021, 22, 10205

13 0f 17

4.6. Hemagglutination Inhibition Assays for Parainfluenza Virus 3 (PIV3) and Influenza
Virus A HIN1pdm09

Virus and cell cultivation, as well as antiviral activity assays for PIV3 and influenza
virus A HIN1pdm(9, were performed as described elsewhere [66]. In short, two (PIV3)
or four (influenza virus) hemagglutination units (HAU) were incubated with a semilog-
arithmic dilution series of test samples (starting at 30 pg/mL WGA) for 10 min at room
temperature. A suspension of chicken red blood cells was added to each well to allow
hemagglutination (HA) of RBC by the virus for 1.5 h at 4 °C. At the time point of as-
say evaluation, control RBC in the absence of an antiviral were fully agglutinated by the
virus, whereas inhibition of hemagglutination could be observed in the presence of the
antiviral up to a certain concentration (MIC). A sample of known inhibitory activity (iota-
carrageenan in 0.5% NaCl), a negative control (0.5% NaCl), and agglutination controls in
the absence of virus were included in every assay to ensure that the assay was functional
and to relate the activity of any antiviral to a reference of known effectiveness. The assays
were standardized and only assays meeting the predefined acceptance criteria were used
for data evaluation.

4.7. SDS-Page and Western Blotting

Protein samples generated by infection experiments were separated by SDS-PAGE,
transferred onto nitrocellulose membranes, blocked with 3% bovine serum albumin, and
incubated with the appropriate primary antibody (Ab). Viral proteins were detected by
antibodies derived from convalescent SARS-CoV-2 patient sera. The anti-human and anti-
rabbit secondary antibodies coupled to horseradish peroxidase (HRP) were obtained from
Dianova (Hamburg, Germany).

4.8. Assessment of Cell Viability

The viability of uninfected cells was assessed by neutral red (Sigma-Aldrich, St. Louis,
MO, USA) and water-soluble tetrazolium salt (WST)-1 assay (Roche, Basel, Switzerland)
according to the manufacturer’s instructions. Cells were treated for 72 h with various
inhibitors according to the protocols of the infection experiments.

4.9. Pull-Down Assays

Streptavidin conjugated to Sepharose 4B was provided as a 50% slurry in phosphate-
buffered saline and was obtained from Merck (EMD Millipore Corp., Billenca, MA, USA).
Biotinylated lectin from Triticum vulgaris was obtained from Sigma Aldrich (St. Louis, MO,
USA) and dissolved in PBS, resulting in a stock solution of 1 mg/mL. Sepharose beads
were incubated with SARS-CoV-2pg.; and lectin from Triticum vulgaris conjugated with or
without biotin for 30 min at room temperature. Beads were then centrifuged and washed
with PBS. The pellet was incubated with 0.5% Triton and analyzed for viral RNA copies
via qRT-PCR.

4.10. Software and Statistics

We used Microsoft Word and Excel. GraphPad Prism 8.0 was used for statistical
analyses and to generate graphs. Figures were generated with CorelDrawX7.
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