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Abstract

Background

Carrageenan is a clinically proven and marketed compound for the treatment of viral upper re-

spiratory tract infections. As infections caused by influenza virus are often accompanied by in-

fections with other respiratory viruses the combination of a specific anti-influenza compound

with the broadly active antiviral polymer has huge potential for the treatment of respiratory in-

fections. Thus, the combination of the specific anti-influenza drug Zanamivir together with car-

rageenan in a formulation suitable for intranasal application was evaluated in-vitro and in-vivo.

Principal Findings

We show in-vitro that carrageenan and Zanamivir act synergistically against several influ-

enza A virus strains (H1N1(09)pdm, H3N2, H5N1, H7N7). Moreover, we demonstrate in a

lethal influenza model with a low pathogenic H7N7 virus (HA closely related to the avian in-

fluenza A(H7N9) virus) and a H1N1(09)pdm influenza virus in C57BL/6 mice that the com-

bined use of both compounds significantly increases survival of infected animals in

comparison with both mono-therapies or placebo. Remarkably, this benefit is maintained

even when the treatment starts up to 72 hours post infection.

Conclusion

A nasal spray containing carrageenan and Zanamivir should therefore be tested for preven-

tion and treatment of uncomplicated influenza in clinical trials.

Introduction
The periodic appearance of new influenza variants poses a worldwide pandemic threat. Since
the emergence of the new A(H7N9) virus, more than 400 human cases were reported to the
WHO with a mortality rate of more than 35%. Most patients with A(H7N9) infections had
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contact with poultry or visited live animal markets. However, some sporadic cases seemed to
be a result of human to human transmissions [1,2]. In contrast to pandemic viruses which ful-
minantly enter the human population and cause high mortality rates, seasonal influenza virus-
es generally cause uncomplicated and transient infections in humans, with virus replication
localized to the upper respiratory tract [3,4]. However, in its fully developed form influenza is
an acute respiratory disease resulting in hospitalizations and deaths mainly among high-risk
groups. Worldwide, annual epidemics result in about three to five million cases of severe ill-
ness, and about 250,000 to 500,000 deaths [5]. For this reason WHO [6] and CDC [7] recom-
mend antiviral treatment for any patient with suspected influenza who is at risk for influenza
complications without previous laboratory confirmation.

It is known that influenza virus infections are often accompanied by other viral pathogens
[8]. Depending on the detection method (qRT-PCR or immunofluorescence) different ratios of
co-infections have been found. Analysis by qRT-PCR revealed that 54.5–83.3% of influenza A
or B positive patients were found to have at least one concomitant respiratory viral infection
[9–12]. The detection frequency with immunofluorescence was found to be even higher (90–
100%) [13,14]. Potential concomitant viral pathogens of influenza virus infections include
human rhinovirus (hRV), respiratory syncytial virus, adenovirus, human coronavirus, human
metapneumovirus and parainfluenza virus [14,15].

As a result of the multiple infections, a specific anti-influenza mono-therapy treats the influ-
enza virus infection only, but not the infection with the concomitant viral pathogen. Hence,
the therapy often fails to sufficiently resolve symptoms. This is also reflected by the fact that
neuraminidase inhibitors (NI) are highly efficacious in animal models investigating influenza
mono-infections [16,17] but show lower efficacy against influenza symptoms in clinical trials
in adults with natural infections [18]. Therefore, there is a high medical need for a broadly act-
ing antiviral therapy in combination with a specific anti-influenza therapy for treatment of pa-
tients suffering from upper respiratory tract symptoms. Ideally, the substances present in the
combination complement each other by different modes of action, leading to a treatment that
provides full protection against a broad range of different respiratory viruses as well as different
influenza strains with a low probability to induce escape mutations.

One approach for a broad antiviral therapy is the creation of a protective physical barrier in
the nasal cavity using carrageenan. Carrageenan is a high molecular weight sulfated polymer
derived from red seaweed (Rhodophyceae) that has been extensively used in food, cosmetic and
pharmaceutical industry and is generally recognized as safe by the FDA (GRAS) (reviewed in
[19]). Three main forms of carrageenans are commercially used: kappa, iota and lambda. They
differ from each other in the degree of sulfation, solubility and gelling properties [20]. The anti-
viral mechanism of carrageenan is based on the interference with viral attachment; as a conse-
quence, viral entry is inhibited [21,22]. Its antiviral activity is dependent on the type of
polymer as well as the virus and the host cells [23–32] and has been reviewed in [33–35]. We
published that iota-carrageenan is a potent inhibitor of hRV [36] and influenza A [37] replica-
tion and demonstrated the antiviral efficacy of iota-carrageenan against common cold viruses
by intranasal application in several randomized, double-blind, parallel group, placebo-con-
trolled clinical trials [38–40]. The pooled analysis of two studies conducted in 153 children and
203 adults revealed that patients infected with any respiratory virus, who were intranasally
treated with iota-carrageenan showed a 1.9 day faster recovery from common cold symptoms
than placebo treated patients in the intention-to-treat population [41,42]. The anti-influenza
activity was shown by subgroup analysis of 49 influenza infected patients who benefited from a
3.3 days faster recovery from symptoms. The use of carrageenan nasal spray was associated
with a significant reduction of the influenza viral load in nasal fluids and a significant increase
in the number of virus free patients within the treatment period of 7 days. In good accordance
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with the literature [9–14] we observed that the majority of influenza virus infected patients suf-
fered from a concomitant respiratory viral infection (66%) as determined by real-time PCR.
Carrageenan containing nasal sprays are already marketed for the treatment of respiratory
viral infections under different brand names in 18 countries.

At present the only available effective drugs for treatment and post exposure prevention of
influenza are the NI (Oseltamivir and Zanamivir worldwide; Peramivir in Japan and South
Korea). Since the large-scale use of M2 blockers for prophylaxis and treatment in humans [43]
and farming [44], the currently circulating influenza viruses already lack sensitivity to this drug
group [45].

We have already shown an additive therapeutic effect of a combination therapy with intra-
nasally applied iota-carrageenan and orally administered Oseltamivir in lethally H1N1 A/PR/
8/34 infected mice and a treatment start 48 hours post infection (hpi) [37].

Due to these very promising results we further developed the concept of combining carra-
geenan with an NI therapy. In contrast to Oseltamivir, which needs to be activated by meta-
bolic conversion, Zanamivir is directly applied as active drug and can also be administered
intranasally [46–52]. The potential of an intranasal administration of Zanamivir was investi-
gated by GlaxoSmithKline. In seven clinical challenge trials 66 volunteers were infected with
influenza B/Yamagata/16/88 and 213 with influenza A/Texas/36/91 (H1N1). 156 of these
participants got intranasally applied Zanamivir at different doses (daily dose levels from 6.4
mg to 96 mg) for prophylaxis or therapy [46,47,53,54]. These challenge trials showed that
treatment starting before and up to 36 hours post virus inoculation was associated with pre-
vention of laboratory confirmed influenza and febrile illness as well as a reduction in viral ti-
ters, duration of shedding and symptoms. In total, safety data from 1092 patients after
intranasal application of Zanamivir were published and no evidence for Zanamivir induced
adverse events or increased frequencies of local nasal intolerance in comparison to placebo
groups was found [46,49,52].

Taken together, the combination of a carrageenan nasal spray that provides broad antiviral
activity against upper respiratory infections—including influenza—with Zanamivir, a specific
anti-influenza drug, meets the existing medical need to treat multiple viral infections. In the
present work we investigate the therapeutic effect of a combination of carrageenan and Zana-
mivir in-vitro and in an animal model.

Material and Methods

Compounds
Kappa-carrageenan and iota-carrageenan were purchased from FMC Biopolymers (Philadel-
phia, PA). The identity, purity (>95%) of carrageenan subtypes and the molecular weight
(>100,000) was confirmed by NMR analysis as described elsewhere [55] and the presence of
lambda-carrageenan was below the detection limit of 3%. The dry polymer powders were dis-
solved in aqua bidest (Fresenius Kabi, Austria) to a final concentration of 2.4 mg/ml iota- and
0.8 mg/ml kappa-carrageenan. This 2x stock solution was sterile filtered through a 0.22 μm fil-
ter (PAA, Switzerland) and stored at room temperature until use. For further testing the stock
solution was diluted to a mixture containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml
kappa-carrageenan (hereinafter referred to as "carrageenan").

Zanamivir was purchased as powder (Haosun Pharma, China) and the identity and purity
was confirmed by NMR analysis. Zanamivir was either dissolved in carrageenan or placebo so-
lutions, followed by sterile filtration through a 0.22 μm filter (Sarstedt, Germany). For in-vivo
studies all Zanamivir containing solutions were freshly prepared.
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Cells and Viruses
Madin-Darby canine kidney (MDCK) cells were obtained from the American Type Culture
Collection (ATCC, Manassas, VA) and cultivated in a 37°C incubator (Sanyo, Japan; CO2: 5%,
relative humidity:>95%). MDCK cells were grown in Dulbecco's minimal essential (DMEM)
high glucose medium (PAA, Austria) supplemented with 10% fetal bovine serum (FBS; PAA,
Austria; heat inactivated).

Influenza virus A/Hansa Hamburg/01/09 (H1N1(09)pdm) was kindly provided by Peter
Staeheli Department of Virology, University of Freiburg, Germany and previously described in
[56]; A/Teal/Germany/Wv632/05 (H5N1) previously published in [57] (accession numbers
CY061882-9) and A/Turkey/Germany/R11/01 (H7N7) (taxonomy ID 278191, accession num-
ber AEZ68716) were supplied by courtesy of Martin Beer, Institute of Diagnostic Virology,
Friedrich-Loeffler-Institute, Riems, Germany; A/Aichi/2/68 (H3N2) was purchased from the
ATCC. All influenza viruses were propagated in MDCK cells at 37°C and 5% CO2 in influenza
medium [Opti-Pro serum free medium (Gibco, Austria) supplemented with 4 mM L-gluta-
mine (PAA, Austria), 1% antibiotic-antimycotic mix (PAA, Austria) and 5 μg/ml trypsin
(Sigma Aldrich, Austria)].

Evaluation of anti-influenza activity in a semi-liquid plaque assay
To determine the 50% inhibitory concentration (IC50) and the combination effect of carrageen-
an and Zanamivir, a semi-liquid plaque assay was developed. Into 96 well tissue culture plates
1.7x104 MDCK cells/well were seeded and infected at 90% confluence (24–28 hours later). Seri-
al dilutions of carrageenan and Zanamivir were prepared in assay medium (influenza medium
without trypsin). For infection, viruses were diluted to an MOI of 0.003 (H1N1(09)pdm and
H3N2 Aichi), 0.015 (H5N1) or 0.004 (H7N7), respectively, in assay medium and incubated at
room temperature (RT) for 10 min with the serial dilutions of carrageenan and/or Zanamivir,
respectively. For evaluation of the combination effect of carrageenan and Zanamivir, viruses
were diluted in assay medium containing constant concentrations of either carrageenan or
Zanamivir. The other substance was serially diluted and used for virus incubation. Cells were
infected in 6 replicates/compound dilution, respectively, and incubated at RT for 45 min before
inoculum removal. Cells were further incubated with the respective concentration of the inves-
tigated substances present in the overlay [influenza medium with 2.25% Carboxymethylcellu-
lose (CMC, Fluka, Austria)] for 30–42 hours at 37°C. Evolving plaques were evaluated after
methanol/acetone cell fixation by immune staining with antibodies either directed against the
influenza A nucleoprotein (AbD Serotec, Germany) (for H1N1(09)pdm, H5N1 and H7N7) or
the hemagglutinin (AbD Serotec, Germany) (for H3N2). Analysis was done with a HRP labeled
detection antibody (Thermo Scientific, Germany) using TMB (Biolegend, Germany) as sub-
strate and a microplate reader at 450 nm. The reduction of detected signal represents a reduc-
tion in the number and size of plaques and indicates suppression of viral replication during
infection and cultivation.

After the immunostaining cells were stained with 0.005% crystal violet solution to assess the
condition of the cell layer and the toxicity of the compounds. IC50 values and standard devia-
tions were calculated for a sigmoidal dose response model using XLfit Excel add-in version
5.3.1.3.

Mouse experiments
All animal experiments were carried out according to the guidelines of the “European Conven-
tion for the Protection of Vertebrate Animals used for Experimental and other Scientific Pur-
poses” and the Austrian law for animal experiments. All animal experiments were approved by
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the Veterinary University of Vienna institutional ethics committee and performed under the
Austrian Federal Ministry of Science and Research experimental animal license numbers
BMWF-68.205/0262-II/3b/2011 and BMWF-68.205/0142-II/3b2012. C57BL/6 mice were pur-
chased from Janvier Labs, France and maintained under standard laboratory conditions in the
animal facilities of the Veterinary University of Vienna. For euthanasia and anesthesia asphyxi-
ation through CO2 was used and all efforts were made to minimize suffering.

For infection experiments, 3–5 weeks old female mice were intranasally inoculated with
50 μl influenza virus solution (25 μl/nostril) containing 2.27x103 or 1.65x103 plaque-forming
unit of H1N1(09)pdm or H7N7, respectively. Subsequently, treatment started 24, 48 or 72 hpi,
as indicated for the different experiments. Treatment was performed intranasally either with
50 μl therapeutic solution or placebo twice per day for 5 days. As therapy either carrageenan
(containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan to provide a daily
dose of 12 mg/kg body weight (BW)), Zanamivir (containing either 130 μg/ml or 390 μg/ml
Zanamivir, to provide a daily dose of 1 or 3 mg/kg BW, respectively) or a combination of carra-
geenan and Zanamivir were used. Carrageenan and Zanamivir are used at non-toxic concen-
trations as shown by [58] and [59]. Mice were monitored twice daily for 15 days for survival
and weight loss. Mortality also includes mice that were sacrificed for ethical considerations
when they had lost more than 25% of their initial body weight. We confirm the viral infection
in these animals by necropsy and scoring of the lung inflammation.

Results

Zanamivir and carrageenan exhibit different antiviral activity against
individual influenza strains
As the mechanisms underlying the antiviral activity of NI and carrageenans are fundamentally
distinct, they are likely to exhibit different activities towards the individual influenza virus
strains. As a result, in combination they could complement each other to provide protection
against a broader spectrum of influenza virus strains than the individual compounds.

To test this hypothesis, we investigated the sensitivity of various influenza virus strains to
Zanamivir and carrageenan in an adapted plaque reduction assay with semi-liquid overlay in
MDCK cells [60,61]. Using this method, we determined the IC50 of Zanamivir and carrageenan
against influenza A viruses of human and animal origin, namely H1N1(09)pdm (A/Hansa
Hamburg/01/09), H3N2 (A/Aichi/2/68), low pathogenic (LP) H5N1 (A/Teal/Germany/
Wv632/05) and LP H7N7 (A/Turkey/Germany/R11/01) (Table 1). Both substances were non-
toxic at the highest tested concentration (400 μMZanamivir and 533 μg/ml carrageenan), nei-
ther was their combination. Furthermore, CMC in the overlay did not show any virus inhibito-
ry effect (data not shown).

Table 1. IC50 values of carrageenan and Zanamivir for influenza A viruses of human and animal
origin.

IC50 Carrageenan
a [μg/ml] IC50 Zanamivira [μM]

H1N1(09)pdm A/Hansa Hamburg/01/09 0.39 ± 0.03 0.19 ± 0.04

H3N2 A/Aichi/2/68 0.92 ± 0.05 15.93 ± 13.25

H5N1 A/Teal/Germany/Wv632/05 10.14 ± 1.66 0.18 ± 0.09

H7N7 A/Turkey/Germany/R11/01 118.48 ± 14.08 22.97 ± 5.76

a IC50 values were calculated in comparison to untreated infected cells. Each value represents the mean

IC50 of 6 replicates/assay and their standard deviation.

doi:10.1371/journal.pone.0128794.t001
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Inhibition of viral replication of all tested influenza strains was achieved with both sub-
stances. However, the IC50 values varied widely depending on the influenza virus strain. The
IC50 values of Zanamivir ranged between 0.18 μM for H5N1 and 22.97 μM for H7N7 and that
of carrageenan from 0.39 μg/ml to 118.48 μg/ml for H1N1(09)pdm and H7N7, respectively
(see Table 1). These results demonstrate that carrageenan and Zanamivir target individual in-
fluenza strains to different extents so that they may complement each other to provide broader
anti-influenza activity.

Carrageenan and Zanamivir act synergistically against human and
animal derived influenza A strains
The type of compound interaction was characterized by employing isobolograms (Fig 1). As
described in [62], isobolograms graphically compare the doses of two compounds needed to
reach 50% inhibition to the predicted doses calculated based on a model of drug additivity. A
curve linearity of ~1 is expected for an additive compound interaction whereas a curve progres-
sion<1 argue for synergistic and>1 for an antagonistic compound interaction.

Two virus strains were selected for those experiments, one being the most sensitive to carra-
geenan (H1N1(09)pdm) and one being the least sensitive (H7N7). In both cases the isobolo-
grams show a synergistic interaction of carrageenan and Zanamivir (Fig 1). Thus, it was shown
that Zanamivir and carrageenan target individual influenza viruses with different efficiencies,
most probably due to their different antiviral strategies. As a result, the combination provides
synergistic activity with higher protection against a broader spectrum of influenza virus strains
than the individual compounds.

Fig 1. Isobologram of compound interaction. Comparison of the combination of different doses of both compounds necessary to reach 50% replication
inhibition of (A) H7N7 and (B) H1N1(09)pdm (◆) to a model of dose additivity that would represent a curve progression of 1 (□). Dose response was tested
with an adapted plaque reduction assay with semi-liquid overlay in MDCK cells. On the x-axis the concentration of Zanamivir and on the y-axis the
concentration of carrageenan is presented. The concentrations (determined as mean of 3 replicates) are given as the fraction of the respective IC50 values of
the different viruses with the particular compound (IC50 = 1).

doi:10.1371/journal.pone.0128794.g001
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Intranasal treatment with the combination synergistically protects mice
from lethal influenza H7N7 infection
In the influenza animal model, C57Bl/6 mice are challenged with a lethal dose of the respective
virus and treated with different regimens in comparison to a vehicle control (placebo). Infec-
tion and treatment (twice a day for 5 days) are done intranasally without anesthesia. We inves-
tigated whether the combination of Zanamivir and carrageenan is more efficacious in reducing
mortality than the corresponding mono-therapies.

First, we determined the minimal effective dose of a Zanamivir mono-therapy that signifi-
cantly improved survival time of H1N1 and H7N7 infected mice. For the H7N7 lethal infection
the minimal effective dose of Zanamivir as mono-therapy ranged between 1 and 3 mg/kg BW/
day (data not shown). Next, we compared the antiviral activity of carrageenan (12 mg/kg BW/
day) and Zanamivir (1 and 3 mg/kg BW/day) mono-therapies with the respective combination
versus placebo treatment. Survival rates of mice with treatment starting 24 hpi are shown in
Fig 2A. All placebo treated mice died between day 7 and 9 and also in all mono-therapy groups
100% lethality was observed until day 15. In contrast, the combination therapies led to 50%
and 90% survival, depending on the Zanamivir concentration. Statistical analysis showed that
the Zanamivir mono-therapy 1 mg/kg BW/day did not show a significant benefit (p = 0.1810),
whereas the mono-therapy with 3 mg/kg BW/day significantly increased the survival rate com-
pared with placebo treated mice (p = 0.0016). Both Zanamivir concentrations experienced sig-
nificant benefit in survival by the combination with carrageenan (p<0.0001). Similarly, the
combination therapies resulted in remarkably increased survival (p = 0.0421 for 1 mg and
p<0.0001 for 3 mg/kg BW/day) when compared to the carrageenan mono-therapy. No statisti-
cally significant difference was observed between the combination containing 3 mg/kg BW/day
Zanamivir and that containing 1 mg/kg BW/day (p = 0.0525). However, a trend for an in-
creased survival rate with the higher Zanamivir concentration was evident. Therefore, for fur-
ther investigation the combination therapy containing 3 mg/kg BW/day Zanamivir was
evaluated in lethally H7N7 infected mice.

Next, the therapeutic potential of the combination with a delayed therapy start 48 or 72 hpi
versus placebo treatment was explored. The survival rates of mice are shown in Fig 2B. All pla-
cebo treated mice died until day 10 and also in the group with the treatment start 72 hpi 100%
lethality was found. In contrast, the combination therapy starting 48 hpi provided a statistically
significant enhanced survival rate in comparison to placebo-treated mice (p = 0.0010).

In summary, the combination of two effective, established mono-therapies resulted in a sig-
nificantly enhanced survival in lethally H7N7 infected mice. Additionally, the combination
therapy was highly efficient in comparison to placebo treatment even after a treatment onset
up to 48 hpi.

Intranasal therapy with carrageenan and Zanamivir starting 72 hpi
significantly protects lethally influenza H1N1(09)pdm infected mice
Next, the minimal effective dose of Zanamivir used as mono-therapy was evaluated in a lethal
H1N1(09)pdm mouse model, following the same scheme as described in the H7N7 experi-
ments. The lowest effective dose of Zanamivir after a treatment start 24 hpi was 1 mg/kg BW/
day and its combination with carrageenan was highly effective (data not shown). In the follow-
ing experiment the therapeutic potential of the combination with a therapy start 48 or 72 hpi
was investigated in comparison with the respective placebo treatment.

As shown in Fig 3, the survival rates of mice treated with the combination therapy were
highly significantly increased in comparison to the placebo group (p<0.0001). There was no
difference in survival between the two therapy starting points, 48 or 72 hpi, which both resulted
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Fig 2. Therapeutic efficacy in influenza H7N7 lethally infectedmice. (A) Mice (n = 10 per group) were
lethally intranasally infected without anesthesia on day 0 and intranasally treated twice per day either with
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in 80% survival on day 15. Subsequent experiments to investigate the effect of a treatment start
96 hpi showed no significantly enhanced survival over placebo treatment (data not shown).

Discussion
We investigated the antiviral effect of a combination of carrageenan with the NI Zanamivir in
cell culture studies and in mouse influenza infection models. We have previously shown that a
combined therapy of iota-carrageenan with the NI Oseltamivir led to significantly enhanced
survival in mice infected with H1N1 PR/8/34 in comparison with the respective mono-thera-
pies [37]. However, Oseltamivir is an orally administered prodrug, which has to be converted
into its active form by metabolic processing. Therefore, a further development of a combina-
tion nasal spray was not possible with Oseltamivir. Instead Zanamivir–a NI that is applied as
active drug—was chosen for the development of a compound combination.

During the evaluation process we found that the binding efficiency of different carrageenan
subtypes on different influenza strains varies. The combined use of iota- and kappa-carrageen-
an for the treatment of lethally influenza infected C57Bl/6 mice revealed a better therapeutic ef-
fect than the use of iota-carrageenan alone (S1 Fig). Thus, to provide a broader spectrum of
activity against different influenza virus strains, a mixture of iota- and kappa-carrageenan (des-
ignated as carrageenan) was used for further evaluation.

For investigation of the effect of a compound combination of carrageenan and Zanamivir,
we examined their inhibition efficiency, individually and in combination, against influenza vi-
ruses in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells. The com-
bination showed a synergistic inhibition of virus replication in in-vitro assays with all tested
influenza viruses (Fig 1). This indicates that the physical interaction of the polymer with the
virus does not disturb the inhibition of the neuraminidase by Zanamivir. This was confirmed
in in-vitro tests examining a potential influence of the polymer on the neuraminidase inhibiting
activity of Zanamivir (data not shown). Hence, the observed synergistic effect is based on the
combination of two distinct underlying mechanisms. As a result, in the proposed combination
both mechanisms would complement each other to provide more efficient protection against a
broader spectrum of influenza virus strains than the individual compounds.

The synergistic effect was also shown in lethal mice models (Fig 2 and Fig 3). The pathoge-
nicity of influenza viruses in mice varies and is dependent on the strain and its adaptation to
the host. Depending on virus dose and strain, influenza viruses can induce lethal infections in
certain mouse strains usually within two weeks [37,63]. In our model, C57Bl/6 mice are chal-
lenged intranasally with a lethal dose of the respective virus and treated with different regimens
in comparison to a vehicle control (placebo). In such a model, early virus replication takes
place in the upper respiratory tract. From there, virus spreads to the lung and causes lethal
pneumonia. The effect of the treatment on mortality is assessed in comparison to placebo-
treated control mice. Of all in-vitro tested influenza strains the H1N1(09)pdm and the LP
H7N7 are particularly interesting for two reasons. First, they are highly relevant pathogens, as

placebo or with the mono-therapies consisting of carrageenan (12 mg/kg BW/day) or Zanamivir (1 and 3 mg/
kg BW/day) or a combination thereof. Treatment started 24 hpi and continued for 5 days. (B) Mice (n = 20 per
group) were lethally intranasally infected without anesthesia on day 0 and intranasally treated twice per day
either with placebo or a combination of carrageenan with Zanamivir (3 mg/kg BW/day). Treatment started
either 48 hpi or 72 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the
time post infection [days] is given. Placebo treated uninfected control mice showed 100% survival in both
experiments (data not shown). Statistical analyses were conducted using log rank test and are shown
beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was
obtained with p-values >0.05.

doi:10.1371/journal.pone.0128794.g002
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both are involved in recent influenza outbreaks. The H1N1(09)pdm is associated with more
than 18,400 deaths in the season 2009/2010 while the LP H7N7 carries an HA closely related to
that of the avian influenza H7N9 virus which has caused more than 175 deaths until October
2014 [64]. Second, they are of special interest for the carrageenan/Zanamivir combination ap-
proach. They have shown to differ in in-vitro susceptibility to carrageenan, Zanamivir
(Table 1) and the combination thereof (Fig 1). While H1N1(09)pdm was highly sensitive to in-
hibition by both substances alone, H7N7 required much higher concentrations of carrageenan
and Zanamivir, respectively, to achieve similar inhibition efficiencies. Therefore, both virus
strains were chosen to further explore the efficiency of the combination therapy in a mouse
model.

We established lethal mouse models with both viruses that resulted in 6.8 and 8.5 mean sur-
vival days for LP H7N7 and H1N1(09)pdm, respectively. These results are in good accordance
to similar already published lethal influenza models [65–67]. In our models the lowest effective
dose for Zanamivir at a treatment start 24 hpi was found to be between 1 to 3 mg/kg BW/day
for both viruses. This concentration range is relatively high in comparison to other published
studies. However, these studies were done under anesthesia with different viruses and a pro-
phylactic therapy start [65,66]. The fact that a higher dose of NI is needed for an effective treat-
ment when the therapy starts 24 hpi is already known for Oseltamivir [68]. Nonetheless, also
data with much higher effective concentrations (�10 mg/kg BW/day [69]) and with similar
concentrations of Zanamivir (2.5 mg/kg BW/day [67]) were published as well.

We found that the combination of carrageenan with 3 mg/kg BW/day Zanamivir used for
treatment of H7N7 infected mice resulted in significantly enhanced survival of mice in com-
parison to both mono-therapies (Fig 2). The significantly enhanced survival compared to the
placebo treated group was also found after a delayed treatment start 48 hpi. Furthermore, in

Fig 3. Therapeutic efficacy in influenza H1N1(09)pdm lethally infected mice.Mice (n = 20 per group)
were lethally intranasally infected without anesthesia on day 0 and intranasally treated twice per day either
with placebo or a combination of carrageenan and Zanamivir (1 mg/kg BW/day). Treatment started either 48
hpi or 72 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post
infection [days] is given. Placebo treated uninfected control mice showed 100% survival (data not shown).
Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05
were considered statistically significant.

doi:10.1371/journal.pone.0128794.g003
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the H1N1(09)pdm model the combination of carrageenan with 1 mg/kg BW/day Zanamivir
showed statistically significant enhanced survival in comparison to placebo treatment even
after a treatment start 72 hpi. This is a remarkable finding since NIs are normally not effective
when applied 72 hpi.

The finding supports the development of the Zanamivir and carrageenan combination ap-
proach. As the intranasal treatment regime is incapable to effectively treat virus infections of
the lung, the primary target of such a product is the prophylaxis and therapy of uncomplicated
influenza. Since the majority of influenza infections causes uncomplicated illnesses and practi-
cally all cases of influenza start with an infection of the nasal cavity or the upper respiratory
tract, the therapeutic potential is huge. However, clinical studies are required to elucidate and
demonstrate the potential of the proposed combination therapy.

Combination of antiviral strategies has led to impressive achievements in the combat
against other viral disease like HIV. In particular the problem of antiviral resistance could be
addressed with this strategy. In the last decade concerns have been raised about the increased
emergence of Oseltamivir resistant influenza viruses. The augmented appearance of viruses
carrying the mutation H275Y in the neuraminidase of H1N1(09)pdm viruses that confers re-
sistance to Oseltamivir left Zanamivir as only treatment option for symptomatic patients in-
fected with an Oseltamivir resistant influenza strain [70]. In contrast to Oseltamivir, resistance
to Zanamivir is less frequent. To date, Zanamivir resistant influenza has been detected only
once, in an immunocompromised patient [71,72]. However, lessons should be learned from
previous anti-influenza interventions which resulted in occurrence of resistance against cur-
rently approved drugs [73]. Therefore, concerns are comprehensible that an increased Zanami-
vir use may also lead to the rapid emergence of resistances [74]. To overcome this threat, a
combination of antivirals which inhibits virus replication by distinct mechanisms is a valid
strategy. We checked for the possibility of generating double compound escape mutant viruses
while passaging viruses in the presence of increasing concentrations of compound combina-
tions. After 10 passages in MDCK cells no resistance to the compound combination for any
tested influenza virus could be found (data not shown). However, this finding does not guaran-
tee that emergence of Zanamivir escape mutants can be completely halted.

In summary, we demonstrated that the anti-influenza mechanisms of both single com-
pounds complement each other. The combination provides synergistically better protection
against a broader spectrum of influenza viruses than the individual compounds.

Conclusions
A nasal spray containing carrageenan together with Zanamivir provides an easy to apply treat-
ment of upper respiratory tract infections in patients under suspicion to be influenza infected.
Patients would benefit from the fast and efficient treatment of uncomplicated influenza in the
upper respiratory tract. Due to the faster influenza virus clearance from the upper respiratory
tract and the independent antiviral mechanism of carrageenan and Zanamivir the likelihood to
develop escape mutations against Zanamivir will be reduced. Both individual compounds are
able to reduce severity and/or duration of the influenza illness and a combination is expected
to work similarly. Additionally, due to the broad antiviral effectiveness of carrageenan, patients
will receive in parallel a treatment of concomitant viral infections. Therefore, patients will ben-
efit from a decreased probability to develop complications. In consideration of the complica-
tions known to accompany an influenza virus illness this combinational therapy meets an
urgent medical need.

A second scope of this combination is the protection against newly emerging pandemic vi-
ruses during the time until identification of the virus followed by manufacturing and
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distribution of vaccines [43]. Even if, due to new reverse genetic techniques, less time for pro-
duction of vaccines is needed, it still takes months before large quantities of vaccine are avail-
able [75]. During this time the human population should be protected to decelerate viral
spread. At the moment the only available opportunities for personal protection are hygiene
measures and the use of Tamiflu (brand name of Oseltamivir).

Novel protection and treatment options for influenza are desperately needed. Based on our
encouraging results in mice we suggest testing a nasal spray containing carrageenan in combi-
nation with the neuraminidase inhibitor Zanamivir in clinical trials for prevention or treatment
of uncomplicated influenza infections.

Supporting Information
S1 Fig. Therapeutic efficacy of iota-carrageenan solely or together with kappa-carrageenan
in influenza H7N7 lethal infected mice.Mice (n = 20 per group) were lethally intranasally in-
fected without anesthesia on day 0 and accordingly intranasally treated twice per day either
with placebo or with iota-carrageenan or with a mixture of iota- and kappa-carrageenan. Treat-
ment started 24 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the
x-axis the time post infection [days] is given. Placebo treated, uninfected control mice showed
100% survival (data not shown). Statistical analyses were conducted using log rank test and are
shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-sig-
nificance (n.s.) was obtained with p-values>0.05.
(TIFF)
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